-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.py
162 lines (122 loc) · 5.56 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Inspired from OpenAI Baselines. This uses the same design of having an easily
# substitutable generic policy that can be trained. This allows to easily
# substitute in the I2A policy as opposed to the basic CNN one.
import numpy as np
import tensorflow as tf
from common.minipacman import MiniPacman
from common.multiprocessing_env import SubprocVecEnv
from tqdm import tqdm
import argparse
from i2a import I2aPolicy
from a2c import CnnPolicy, get_actor_critic
N_ENVS = 16
N_STEPS=5
# Total number of iterations (taking into account number of environments and
# number of steps). You wish to train for.
TOTAL_TIMESTEPS=int(1e6)
GAMMA=0.99
LOG_INTERVAL=100
SAVE_INTERVAL = 1e5
# Where you want to save the weights
SAVE_PATH = 'weights'
# This can be anything from "regular" "avoid" "hunt" "ambush" "rush" each
# resulting in a different reward function giving the agent different behavior.
REWARD_MODE = 'regular'
def discount_with_dones(rewards, dones, GAMMA):
discounted = []
r = 0
for reward, done in zip(rewards[::-1], dones[::-1]):
r = reward + GAMMA*r*(1.-done)
discounted.append(r)
return discounted[::-1]
def train(policy, save_name, load_count = 0, summarize=True, load_path=None, log_path = './logs'):
def make_env():
def _thunk():
env = MiniPacman(REWARD_MODE, 1000)
return env
return _thunk
envs = [make_env() for i in range(N_ENVS)]
envs = SubprocVecEnv(envs)
ob_space = envs.observation_space.shape
nw, nh, nc = ob_space
ac_space = envs.action_space
obs = envs.reset()
with tf.Session() as sess:
actor_critic = get_actor_critic(sess, N_ENVS, N_STEPS, ob_space,
ac_space, policy, summarize)
if load_path is not None:
actor_critic.load(load_path)
print('Loaded a2c')
summary_op = tf.summary.merge_all()
writer = tf.summary.FileWriter(log_path, graph=sess.graph)
sess.run(tf.global_variables_initializer())
batch_ob_shape = (N_ENVS*N_STEPS, nw, nh, nc)
dones = [False for _ in range(N_ENVS)]
nbatch = N_ENVS * N_STEPS
episode_rewards = np.zeros((N_ENVS, ))
final_rewards = np.zeros((N_ENVS, ))
for update in tqdm(range(load_count + 1, TOTAL_TIMESTEPS + 1)):
# mb stands for mini batch
mb_obs, mb_rewards, mb_actions, mb_values, mb_dones = [],[],[],[],[]
for n in range(N_STEPS):
actions, values, _ = actor_critic.act(obs)
mb_obs.append(np.copy(obs))
mb_actions.append(actions)
mb_values.append(values)
mb_dones.append(dones)
obs, rewards, dones, _ = envs.step(actions)
episode_rewards += rewards
masks = 1 - np.array(dones)
final_rewards *= masks
final_rewards += (1 - masks) * episode_rewards
episode_rewards *= masks
mb_rewards.append(rewards)
mb_dones.append(dones)
#batch of steps to batch of rollouts
mb_obs = np.asarray(mb_obs, dtype=np.float32).swapaxes(1, 0).reshape(batch_ob_shape)
mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(1, 0)
mb_actions = np.asarray(mb_actions, dtype=np.int32).swapaxes(1, 0)
mb_values = np.asarray(mb_values, dtype=np.float32).swapaxes(1, 0)
mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0)
mb_masks = mb_dones[:, :-1]
mb_dones = mb_dones[:, 1:]
last_values = actor_critic.critique(obs).tolist()
#discount/bootstrap off value fn
for n, (rewards, d, value) in enumerate(zip(mb_rewards, mb_dones, last_values)):
rewards = rewards.tolist()
d = d.tolist()
if d[-1] == 0:
rewards = discount_with_dones(rewards+[value], d+[0], GAMMA)[:-1]
else:
rewards = discount_with_dones(rewards, d, GAMMA)
mb_rewards[n] = rewards
mb_rewards = mb_rewards.flatten()
mb_actions = mb_actions.flatten()
mb_values = mb_values.flatten()
mb_masks = mb_masks.flatten()
if summarize:
loss, policy_loss, value_loss, policy_entropy, _, summary = actor_critic.train(mb_obs,
mb_rewards, mb_masks, mb_actions, mb_values, update,
summary_op)
writer.add_summary(summary, update)
else:
loss, policy_loss, value_loss, policy_entropy, _ = actor_critic.train(mb_obs,
mb_rewards, mb_masks, mb_actions, mb_values, update)
if update % LOG_INTERVAL == 0 or update == 1:
print('%i): %.4f, %.4f, %.4f' % (update, policy_loss, value_loss, policy_entropy))
print(final_rewards.mean())
if update % SAVE_INTERVAL == 0:
print('Saving model')
actor_critic.save(SAVE_PATH, save_name + '_' + str(update) + '.ckpt')
actor_critic.save(SAVE_PATH, save_name + '_done.ckpt')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('algo', help='Algorithm to train either i2a or a2c')
args = parser.parse_args()
if args.algo == 'a2c':
policy = CnnPolicy
elif args.algo == 'i2a':
policy = I2aPolicy
else:
raise ValueError('Must specify the algo name as either a2c or i2a')
train(policy, args.algo, summarize=True, log_path=args.algo + '_logs')