-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathi2a.py
293 lines (212 loc) · 9.81 KB
/
i2a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import gym
import time
import logging
import numpy as np
import tensorflow as tf
from common.minipacman import MiniPacman
from common.multiprocessing_env import SubprocVecEnv
from tqdm import tqdm
from env_model import create_env_model
from a2c import get_actor_critic, CnnPolicy
from common.pacman_util import num_pixels, mode_rewards, pix_to_target, rewards_to_target, mode_rewards, target_to_pix
# Hyperparameter of how far ahead in the future the agent "imagines"
# Currently this is specifying one frame in the future.
NUM_ROLLOUTS = 1
# Hidden size in RNN imagination encoder.
HIDDEN_SIZE = 256
N_STEPS = 5
# This can be anything from "regular" "avoid" "hunt" "ambush" "rush" each
# resulting in a different reward function giving the agent different behavior.
REWARD_MODE = 'regular'
# Replace this with the name of the weights you want to load to train I2A
A2C_MODEL_PATH = 'weights/a2c_200000.ckpt'
ENV_MODEL_PATH = 'weights/env_model.ckpt'
# Softmax function for numpy taken from
# https://nolanbconaway.github.io/blog/2017/softmax-numpy
def softmax(X, theta = 1.0, axis = None):
"""
Compute the softmax of each element along an axis of X.
Parameters
----------
X: ND-Array. Probably should be floats.
theta (optional): float parameter, used as a multiplier
prior to exponentiation. Default = 1.0
axis (optional): axis to compute values along. Default is the
first non-singleton axis.
Returns an array the same size as X. The result will sum to 1
along the specified axis.
"""
# make X at least 2d
y = np.atleast_2d(X)
# find axis
if axis is None:
axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1)
# multiply y against the theta parameter,
y = y * float(theta)
# subtract the max for numerical stability
y = y - np.expand_dims(np.max(y, axis = axis), axis)
# exponentiate y
y = np.exp(y)
# take the sum along the specified axis
ax_sum = np.expand_dims(np.sum(y, axis = axis), axis)
# finally: divide elementwise
p = y / ax_sum
# flatten if X was 1D
if len(X.shape) == 1: p = p.flatten()
return p
def convert_target_to_real(batch_size, nw, nh, nc, imagined_state, imagined_reward):
imagined_state = softmax(imagined_state, axis=1)
imagined_state = np.argmax(imagined_state, axis=1)
imagined_state = target_to_pix(imagined_state)
imagined_state = imagined_state.reshape((batch_size, nw, nh,
nc))
imagined_reward = softmax(imagined_reward, axis=1)
imagined_reward = np.argmax(imagined_reward, axis=1)
return imagined_state, imagined_reward
"""
Used to generate rollouts of imagined states.
"""
class ImaginationCore(object):
def __init__(self, num_rollouts, num_actions, num_rewards,
ob_space, actor_critic, env_model):
self.num_rollouts = num_rollouts
self.num_actions = num_actions
self.num_rewards = num_rewards
self.ob_space = ob_space
self.actor_critic = actor_critic
self.env_model = env_model
def imagine(self, state, sess):
nw, nh, nc = self.ob_space
batch_size = state.shape[0]
state = np.tile(state, [self.num_actions, 1, 1, 1, 1])
state = state.reshape(-1, nw, nh, nc)
action = np.array([[[i] for i in range(self.num_actions)] for j in
range(batch_size)])
action = action.reshape((-1,))
rollout_batch_size = batch_size * self.num_actions
rollout_states = []
rollout_rewards = []
for step in range(self.num_rollouts):
onehot_action = np.zeros((rollout_batch_size, self.num_actions, nw, nh))
onehot_action[range(rollout_batch_size), action] = 1
onehot_action = np.transpose(onehot_action, (0, 2, 3, 1))
imagined_state, imagined_reward = sess.run(
[self.env_model.imag_state, self.env_model.imag_reward],
feed_dict={
self.env_model.input_states: state,
self.env_model.input_actions: onehot_action,
})
imagined_state, imagined_reward = convert_target_to_real(rollout_batch_size, nw, nh, nc, imagined_state, imagined_reward)
onehot_reward = np.zeros((rollout_batch_size, self.num_rewards))
onehot_reward[range(rollout_batch_size), imagined_reward] = 1
rollout_states.append(imagined_state)
rollout_rewards.append(onehot_reward)
state = imagined_state
action, _, _ = self.actor_critic.act(state)
return np.array(rollout_states), np.array(rollout_rewards)
# So the model is not loaded twice.
g_actor_critic = None
def get_cache_loaded_a2c(sess, nenvs, nsteps, ob_space, ac_space):
global g_actor_critic
if g_actor_critic is None:
with tf.variable_scope('actor'):
g_actor_critic = get_actor_critic(sess, nenvs, nsteps, ob_space,
ac_space, CnnPolicy, should_summary=False)
g_actor_critic.load(A2C_MODEL_PATH)
print('Actor restored!')
return g_actor_critic
# So the model is not loaded twice.
g_env_model = None
def get_cache_loaded_env_model(sess, nenvs, ob_space, num_actions):
global g_env_model
if g_env_model is None:
with tf.variable_scope('env_model'):
g_env_model = create_env_model(ob_space, num_actions, num_pixels,
len(mode_rewards[REWARD_MODE]), should_summary=False)
save_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='env_model')
loader = tf.train.Saver(var_list=save_vars)
loader.restore(sess, ENV_MODEL_PATH)
print('Env model restored!')
return g_env_model
class I2aPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False):
num_rewards = len(mode_rewards[REWARD_MODE])
num_actions = ac_space.n
width, height, depth = ob_space
actor_critic = get_cache_loaded_a2c(sess, nbatch, N_STEPS, ob_space, ac_space)
env_model = get_cache_loaded_env_model(sess, nbatch, ob_space, num_actions)
self.imagination = ImaginationCore(NUM_ROLLOUTS, num_actions, num_rewards,
ob_space, actor_critic, env_model)
with tf.variable_scope('model', reuse=reuse):
# Model based path.
self.imagined_state = tf.placeholder(tf.float32, [None, None, width, height, depth])
self.imagined_reward = tf.placeholder(tf.float32, [None, None, num_rewards])
num_steps = tf.shape(self.imagined_state)[0]
batch_size = tf.shape(self.imagined_state)[1]
hidden_state = self.get_encoder(self.imagined_state, self.imagined_reward,
num_steps, batch_size, width, height, depth, HIDDEN_SIZE)
# Model free path.
self.state = tf.placeholder(tf.float32, [None, width, height,
depth])
state_batch_size = tf.shape(self.state)[0]
c1 = tf.layers.conv2d(self.state, 16, kernel_size=3,
strides=1, padding='valid', activation=tf.nn.relu)
c2 = tf.layers.conv2d(c1, 16, kernel_size=3,
strides=2, padding='valid', activation=tf.nn.relu)
features = tf.reshape(c2, [state_batch_size, 6 * 8 * 16])
self.features = features
hidden_state = tf.reshape(hidden_state, [state_batch_size, 80 * 256
// 16])
# Combine both paths
x = tf.concat([features, hidden_state], axis=1)
x = tf.layers.dense(x, 256, activation=tf.nn.relu)
self.pi = tf.layers.dense(x, num_actions)
self.vf = tf.layers.dense(x, 1)[:, 0]
# Sample action. `pi` is like the logits
u = tf.random_uniform(tf.shape(self.pi))
self.a0 = tf.argmax(self.pi - tf.log(-tf.log(u)), axis=-1)
# Get the negative log likelihood
one_hot_actions = tf.one_hot(self.a0, self.pi.get_shape().as_list()[-1])
self.neglogp0 = tf.nn.softmax_cross_entropy_with_logits(
logits=self.pi,
labels=one_hot_actions)
def get_encoder(self, state, reward, num_steps, batch_size, width, height, depth, hidden_size):
state = tf.reshape(state, [num_steps * batch_size, width, height,
depth])
c1 = tf.layers.conv2d(state, 16, kernel_size=3, strides=1,
padding='valid', activation=tf.nn.relu)
features = tf.layers.conv2d(c1, 16, kernel_size=3, strides=2,
padding='valid', activation=tf.nn.relu)
features = tf.reshape(features, [num_steps, batch_size, 6 * 8 * 16])
rnn_input = tf.concat([features, reward], 2)
cell = tf.contrib.rnn.GRUCell(hidden_size)
_, internal_state = tf.nn.dynamic_rnn(cell, rnn_input, time_major=True, dtype=tf.float32)
return internal_state
def step(self, sess, ob):
imagined_state, imagined_reward, ob = self.transform_input(ob, sess)
a, v, neglogp = sess.run([
self.a0,
self.vf,
self.neglogp0
],
{
self.imagined_state: imagined_state,
self.imagined_reward: imagined_reward,
self.state: ob
})
return a, v, neglogp
def value(self, sess, ob):
imagined_state, imagined_reward, ob = self.transform_input(ob, sess)
v = sess.run(self.vf, {
self.imagined_state: imagined_state,
self.imagined_reward: imagined_reward,
self.state: ob
})
return v
# Add the imagined states to the default input.
def get_inputs(self):
return [self.imagined_state, self.imagined_reward, self.state]
def transform_input(self, X, sess):
imagined_state, imagined_reward = self.imagination.imagine(X, sess)
return [imagined_state, imagined_reward, X]