diff --git a/lisa/analysis/pixel6.py b/lisa/analysis/pixel6.py index 78029998f5..6648d8fab1 100644 --- a/lisa/analysis/pixel6.py +++ b/lisa/analysis/pixel6.py @@ -67,7 +67,7 @@ def make_chan_df(df): df = pd.DataFrame(dict(power=power, channel=df['chan_name'])) return df.dropna() - df = grouped.apply(make_chan_df) + df = grouped[df.columns].apply(make_chan_df) df['channel'] = df['channel'].astype('category').cat.rename_categories(Pixel6Analysis.EMETER_CHAN_NAMES) return df diff --git a/lisa/datautils.py b/lisa/datautils.py index fdd471fc8e..d56903cce3 100644 --- a/lisa/datautils.py +++ b/lisa/datautils.py @@ -1429,7 +1429,7 @@ def df_combine_duplicates(df, func, output_col, cols=None, all_col=True, prune=T # Apply the function to each group, and assign the result to the output # Note that we cannot use GroupBy.transform() as it currently cannot handle # NaN groups. - output = df.groupby('duplicate_group', sort=False, as_index=True, group_keys=False, observed=True).apply(func) + output = df.groupby('duplicate_group', sort=False, as_index=True, group_keys=False, observed=True)[df.columns].apply(func) if not output.empty: init_df[output_col].update(output)