-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphase3.py
36 lines (27 loc) · 1.08 KB
/
phase3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import pandas as pd
import os
from tqdm import tqdm
from diffusers import StableDiffusionPipeline
## Stable Diffusion Pipeline for generating images from text
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe = pipe.to("cuda")
## Read the chapter titles from the csv file
df = pd.read_csv("data/df_chapters.csv", index_col=None)
chapter_titles = list(df['chapter_gist'])
## Set the number of images to generate for each chapter title
num_images = 3
## Generate images for each chapter title
for title in tqdm(chapter_titles):
print(title)
prompt = [title] * num_images
title_path = title.replace(" ", "_")
## Check for images that have already been generated
if os.path.exists(f"images/{title_path}") and (len(os.listdir(f"images/{title_path}")) == num_images + 1 \
or len(os.listdir(f"images/{title_path}")) == num_images):
continue
else:
os.makedirs(f"images/{title_path}")
images = pipe(prompt).images
for i,image in enumerate(images):
image.save(f"images/{title_path}/{i}.png")