-
Notifications
You must be signed in to change notification settings - Fork 8
/
local_evaluation.py
152 lines (136 loc) · 5.55 KB
/
local_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# coding=utf-8
# Copyright 2018 The DisentanglementLib Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# We group all the imports at the top.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
# from disentanglement_lib.evaluation import evaluate
import disentanglement_lib
try:
# Monkey patch in our own evaluate, which supports pytorch *and* tensorflow.
import evaluate
disentanglement_lib.evaluation.evaluate = evaluate
MONKEY = True
except ImportError:
# No pytorch, no problem.
MONKEY = False
from disentanglement_lib.evaluation.metrics import utils
from disentanglement_lib.methods.unsupervised import train
from disentanglement_lib.methods.unsupervised import vae
from disentanglement_lib.postprocessing import postprocess
from disentanglement_lib.utils import aggregate_results
from disentanglement_lib.visualize import visualize_model
from disentanglement_lib.config.unsupervised_study_v1 import sweep as unsupervised_study_v1
import tensorflow as tf
import gin.tf
import json
import numpy as np
##############################################################################
# 0. Settings
# By default, we save all the results in subdirectories of the following path.
##############################################################################
base_path = os.getenv("AICROWD_OUTPUT_PATH","./scratch/shared")
experiment_name = os.getenv("AICROWD_EVALUATION_NAME", "experiment_name")
DATASET_NAME = "auto"
overwrite = True
experiment_output_path = os.path.join(base_path, experiment_name)
ROOT = os.getenv("NDC_ROOT", ".")
# Print the configuration for reference
if not MONKEY:
print(f"Evaluating Experiment '{experiment_name}' from {base_path}.")
else:
import utils_pytorch
exp_config = utils_pytorch.get_config()
print(f"Evaluating Experiment '{exp_config.experiment_name}' "
f"from {exp_config.base_path} on dataset {exp_config.dataset_name}")
# ----- Helpers -----
def get_full_path(filename):
return os.path.join(ROOT, filename)
##############################################################################
# Gather Evaluation Configs | Compute Metrics
##############################################################################
_study = unsupervised_study_v1.UnsupervisedStudyV1()
evaluation_configs = sorted(_study.get_eval_config_files())
#Add IRS
evaluation_configs.append(get_full_path("extra_metrics_configs/irs.gin"))
# Compute individual metrics
expected_evaluation_metrics = [
'dci',
'factor_vae_metric',
'sap_score',
'mig',
'irs'
]
for gin_eval_config in evaluation_configs:
metric_name = gin_eval_config.split("/")[-1].replace(".gin", "")
if metric_name not in expected_evaluation_metrics:
# Ignore unneeded evaluation configs
continue
print("Evaluating Metric : {}".format(metric_name))
result_path = os.path.join(
experiment_output_path,
"metrics",
metric_name
)
representation_path = os.path.join(
experiment_output_path,
"representation"
)
eval_bindings = [
"evaluation.random_seed = {}".format(0),
"evaluation.name = '{}'".format(metric_name)
]
evaluate.evaluate_with_gin(
representation_path,
result_path,
overwrite,
[gin_eval_config],
eval_bindings
)
# Gather evaluation results
evaluation_result_template = "{}/metrics/{}/results/aggregate/evaluation.json"
final_scores = {}
for _metric_name in expected_evaluation_metrics:
evaluation_json_path = evaluation_result_template.format(
experiment_output_path,
_metric_name
)
evaluation_results = json.loads(
open(evaluation_json_path, "r").read()
)
if _metric_name == "factor_vae_metric":
_score = evaluation_results["evaluation_results.eval_accuracy"]
final_scores["factor_vae_metric"] = _score
elif _metric_name == "dci":
_score = evaluation_results["evaluation_results.disentanglement"]
final_scores["dci"] = _score
elif _metric_name == "mig":
_score = evaluation_results["evaluation_results.discrete_mig"]
final_scores["mig"] = _score
elif _metric_name == "sap_score":
_score = evaluation_results["evaluation_results.SAP_score"]
final_scores["sap_score"] = _score
elif _metric_name == "irs":
_score = evaluation_results["evaluation_results.IRS"]
final_scores["irs"] = _score
else:
raise Exception("Unknown metric name : {}".format(_metric_name))
print("Final Scores : ", final_scores)
##############################################################################
# (Optional) Generate Visualizations
##############################################################################
# model_directory = os.path.join(experiment_output_path, "model")
# visualize_model.visualize(model_directory, "viz_output/")