We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi~首先非常感谢你的工作。我最近将micronet的dorefa量化部分适用到我的工程中(检测模型),发现几个问题,希望讨论一下:
The text was updated successfully, but these errors were encountered:
1、inference区别仅仅是先整体做weight量化,推理时仅做activation量化,可以再检查下; 2、用iao试试,加载预训练浮点模型一般会好一些; 3、测试必须用量化算子,因为训练是量化的; 4、量化算法需要统一;至于部署,目前量化后的模型参数通过bn_fuse.py可以直接导出为txt使用,还不支持直接接入其他推理框架。
Sorry, something went wrong.
非常感谢🙏。这几天研究发现qat所得模型确实非常敏感,对于不同的量化参数或算法兼容性基本为0。最近正好看到一篇论文有讨论这个问题: https://arxiv.org/abs/2002.07686
No branches or pull requests
Hi~首先非常感谢你的工作。我最近将micronet的dorefa量化部分适用到我的工程中(检测模型),发现几个问题,希望讨论一下:
The text was updated successfully, but these errors were encountered: