-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathinference.py
389 lines (355 loc) · 16.4 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import os
import sys
import io
import torch
import numpy as np
from omegaconf import OmegaConf
import PIL.Image
from PIL import Image
import rembg
from dva.ray_marcher import RayMarcher
from dva.io import load_from_config
from dva.utils import to_device
from dva.visualize import visualize_primvolume, visualize_video_primvolume
from models.diffusion import create_diffusion
import logging
from tqdm import tqdm
import mcubes
import xatlas
import nvdiffrast.torch as dr
import cv2
from scipy.ndimage import binary_dilation, binary_erosion
from sklearn.neighbors import NearestNeighbors
from utils.meshutils import clean_mesh, decimate_mesh
from utils.mesh import Mesh
from utils.uv_unwrap import box_projection_uv_unwrap, compute_vertex_normal
logger = logging.getLogger("inference.py")
glctx = dr.RasterizeCudaContext()
def remove_background(image: PIL.Image.Image,
rembg_session = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def resize_foreground(
image: PIL.Image.Image,
ratio: float,
) -> PIL.Image.Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = PIL.Image.fromarray(new_image)
return new_image
def extract_texmesh(args, model, output_path, device):
# Prepare directory
ins_dir = output_path
# Noise Filter
raw_srt_param = model.srt_param.clone()
raw_feat_param = model.feat_param.clone()
prim_position = raw_srt_param[:, 1:4]
prim_scale = raw_srt_param[:, 0:1]
dist = torch.sqrt(torch.sum((prim_position[:, None, :] - prim_position[None, :, :]) ** 2, dim=-1))
dist += torch.eye(prim_position.shape[0]).to(raw_srt_param)
min_dist, min_indices = dist.min(1)
dst_prim_scale = prim_scale[min_indices, :]
min_scale_converage = prim_scale * 1. + dst_prim_scale * 1.
prim_mask = min_dist < min_scale_converage[:, 0]
filtered_srt_param = raw_srt_param[prim_mask, :]
filtered_feat_param = raw_feat_param[prim_mask, ...]
model.srt_param.data = filtered_srt_param
model.feat_param.data = filtered_feat_param
print(f'[INFO] Mesh Extraction on PrimX: srt={model.srt_param.shape} feat={model.feat_param.shape}')
# Get SDFs
with torch.no_grad():
xx = torch.linspace(-1, 1, args.mc_resolution, device=device)
pts = torch.stack(torch.meshgrid(xx, xx, xx, indexing='ij'), dim=-1).reshape(-1,3)
chunks = torch.split(pts, args.batch_size)
dists = []
for chunk_pts in tqdm(chunks):
preds = model(chunk_pts)
dists.append(preds['sdf'].detach())
dists = torch.cat(dists, dim=0)
grid = dists.reshape(args.mc_resolution, args.mc_resolution, args.mc_resolution)
# Meshify
vertices, triangles = mcubes.marching_cubes(grid.cpu().numpy(), 0.0)
# Resize + recenter
b_min_np = np.array([-1., -1., -1.])
b_max_np = np.array([ 1., 1., 1.])
vertices = vertices / (args.mc_resolution - 1.0) * (b_max_np - b_min_np) + b_min_np
vertices, triangles = clean_mesh(vertices, triangles, min_f=8, min_d=5, repair=True, remesh=False)
if args.decimate > 0 and triangles.shape[0] > args.decimate:
vertices, triangles = decimate_mesh(vertices, triangles, args.decimate, remesh=args.remesh)
h0 = 1024
w0 = 1024
ssaa = 1
fp16 = True
v_np = vertices.astype(np.float32)
f_np = triangles.astype(np.int64)
v = torch.from_numpy(vertices).float().contiguous().to(device)
f = torch.from_numpy(triangles.astype(np.int64)).to(torch.int64).contiguous().to(device)
if args.fast_unwrap:
print(f'[INFO] running box-based fast unwrapping to unwrap UVs for mesh: v={v_np.shape} f={f_np.shape}')
v_normal = compute_vertex_normal(v, f)
uv, indices = box_projection_uv_unwrap(v, v_normal, f, 0.02)
indv_v = v[f].reshape(-1, 3)
indv_faces = torch.arange(indv_v.shape[0], device=device, dtype=f.dtype).reshape(-1, 3)
uv_flat = uv[indices].reshape((-1, 2))
v = indv_v.contiguous()
f = indv_faces.contiguous()
ft_np = f.cpu().numpy()
vt_np = uv_flat.cpu().numpy()
else:
print(f'[INFO] running xatlas to unwrap UVs for mesh: v={v_np.shape} f={f_np.shape}')
# unwrap uv in contracted space
atlas = xatlas.Atlas()
atlas.add_mesh(v_np, f_np)
chart_options = xatlas.ChartOptions()
chart_options.max_iterations = 0 # disable merge_chart for faster unwrap...
pack_options = xatlas.PackOptions()
atlas.generate(chart_options=chart_options, pack_options=pack_options)
_, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]
vt = torch.from_numpy(vt_np.astype(np.float32)).float().contiguous().to(device)
ft = torch.from_numpy(ft_np.astype(np.int64)).int().contiguous().to(device)
uv = vt * 2.0 - 1.0 # uvs to range [-1, 1]
uv = torch.cat((uv, torch.zeros_like(uv[..., :1]), torch.ones_like(uv[..., :1])), dim=-1) # [N, 4]
if ssaa > 1:
h = int(h0 * ssaa)
w = int(w0 * ssaa)
else:
h, w = h0, w0
rast, _ = dr.rasterize(glctx, uv.unsqueeze(0), ft, (h, w)) # [1, h, w, 4]
xyzs, _ = dr.interpolate(v.unsqueeze(0), rast, f.int()) # [1, h, w, 3]
mask, _ = dr.interpolate(torch.ones_like(v[:, :1]).unsqueeze(0), rast, f.int()) # [1, h, w, 1]
# masked query
xyzs = xyzs.view(-1, 3)
mask = (mask > 0).view(-1)
feats = torch.zeros(h * w, 6, device=device, dtype=torch.float32)
if mask.any():
xyzs = xyzs[mask] # [M, 3]
# batched inference to avoid OOM
all_feats = []
head = 0
chunk_size = args.batch_size
while head < xyzs.shape[0]:
tail = min(head + chunk_size, xyzs.shape[0])
with torch.cuda.amp.autocast(enabled=fp16):
preds = model(xyzs[head:tail])
# [R, G, B, NA, roughness, metallic]
all_feats.append(torch.concat([preds['tex'].float(), torch.zeros_like(preds['tex'])[..., 0:1].float(), preds['mat'].float()], dim=-1))
head += chunk_size
feats[mask] = torch.cat(all_feats, dim=0)
feats = feats.view(h, w, -1) # 6 channels
mask = mask.view(h, w)
# quantize [0.0, 1.0] to [0, 255]
feats = feats.cpu().numpy()
feats = (feats * 255)
### NN search as a queer antialiasing ...
mask = mask.cpu().numpy()
inpaint_region = binary_dilation(mask, iterations=32) # pad width
inpaint_region[mask] = 0
search_region = mask.copy()
not_search_region = binary_erosion(search_region, iterations=3)
search_region[not_search_region] = 0
search_coords = np.stack(np.nonzero(search_region), axis=-1)
inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)
knn = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(search_coords)
_, indices = knn.kneighbors(inpaint_coords)
feats[tuple(inpaint_coords.T)] = feats[tuple(search_coords[indices[:, 0]].T)]
# do ssaa after the NN search, in numpy
feats0 = cv2.cvtColor(feats[..., :3].astype(np.uint8), cv2.COLOR_RGB2BGR) # albedo
feats1 = cv2.cvtColor(feats[..., 3:].astype(np.uint8), cv2.COLOR_RGB2BGR) # visibility features
if ssaa > 1:
feats0 = cv2.resize(feats0, (w0, h0), interpolation=cv2.INTER_LINEAR)
feats1 = cv2.resize(feats1, (w0, h0), interpolation=cv2.INTER_LINEAR)
cv2.imwrite(os.path.join(ins_dir, f'texture.jpg'), feats0)
cv2.imwrite(os.path.join(ins_dir, f'roughness_metallic.jpg'), feats1)
target_mesh = Mesh(v=torch.from_numpy(v_np).contiguous(), f=torch.from_numpy(f_np).contiguous(), ft=ft.contiguous(), vt=torch.from_numpy(vt_np).contiguous(), albedo=torch.from_numpy(feats[..., :3]) / 255, metallicRoughness=torch.from_numpy(feats[..., 3:]) / 255)
target_mesh.write(os.path.join(ins_dir, f'pbr_mesh.glb'))
model.srt_param.data = raw_srt_param
model.feat_param.data = raw_feat_param
def main(config):
logging.basicConfig(level=logging.INFO)
ddim_steps = config.inference.ddim
if ddim_steps > 0:
use_ddim = True
else:
use_ddim = False
cfg_scale = config.inference.get("cfg", 0.0)
inference_dir = f"{config.output_dir}/inference_folder"
os.makedirs(inference_dir, exist_ok=True)
amp = False
precision = config.inference.get("precision", 'fp16')
if precision == 'tf32':
precision_dtype = torch.float32
elif precision == 'fp16':
amp = True
precision_dtype = torch.float16
else:
raise NotImplementedError("{} precision is not supported".format(precision))
device = torch.device(f"cuda:{0}")
seed = config.inference.seed
torch.manual_seed(seed)
torch.cuda.set_device(device)
model = load_from_config(config.model.generator)
vae = load_from_config(config.model.vae)
conditioner = load_from_config(config.model.conditioner)
vae_state_dict = torch.load(config.model.vae_checkpoint_path, map_location='cpu')
vae.load_state_dict(vae_state_dict['model_state_dict'])
if config.checkpoint_path:
state_dict = torch.load(config.checkpoint_path, map_location='cpu')
model.load_state_dict(state_dict['ema'])
vae = vae.to(device)
conditioner = conditioner.to(device)
model = model.to(device)
config.diffusion.pop("timestep_respacing")
if use_ddim:
respacing = "ddim{}".format(ddim_steps)
else:
respacing = ""
diffusion = create_diffusion(timestep_respacing=respacing, **config.diffusion) # default: 1000 steps, linear noise schedule
if use_ddim:
sample_fn = diffusion.ddim_sample_loop_progressive
else:
sample_fn = diffusion.p_sample_loop_progressive
if cfg_scale > 0:
fwd_fn = model.forward_with_cfg
else:
fwd_fn = model.forward
rm = RayMarcher(
config.image_height,
config.image_width,
**config.rm,
).to(device)
perchannel_norm = False
if "latent_mean" in config.model:
latent_mean = torch.Tensor(config.model.latent_mean)[None, None, :].to(device)
latent_std = torch.Tensor(config.model.latent_std)[None, None, :].to(device)
assert latent_mean.shape[-1] == config.model.generator.in_channels
perchannel_norm = True
model.eval()
examples_dir = config.inference.input_dir
img_list = os.listdir(examples_dir)
rembg_session = rembg.new_session()
logger.info(f"Starting Inference...")
for img_path in img_list:
full_img_path = os.path.join(examples_dir, img_path)
img_name = img_path[:-4]
current_output_dir = os.path.join(inference_dir, img_name)
os.makedirs(current_output_dir, exist_ok=True)
input_image = Image.open(full_img_path)
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
raw_image = np.array(input_image)
mask = (raw_image[..., -1][..., None] > 0) * 1
raw_image = raw_image[..., :3] * mask
input_cond = torch.from_numpy(np.array(raw_image)[None, ...]).to(device)
with torch.no_grad():
latent = torch.randn(1, config.model.num_prims, 1, 4, 4, 4)
batch = {}
inf_bs = 1
inf_x = torch.randn(inf_bs, config.model.num_prims, 68).to(device)
y = conditioner.encoder(input_cond)
model_kwargs = dict(y=y[:inf_bs, ...], precision_dtype=precision_dtype, enable_amp=amp)
if cfg_scale > 0:
model_kwargs['cfg_scale'] = cfg_scale
sampled_count = -1
for samples in sample_fn(fwd_fn, inf_x.shape, inf_x, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
):
sampled_count += 1
if not (sampled_count % 10 == 0 or sampled_count == diffusion.num_timesteps - 1):
continue
else:
recon_param = samples["sample"].reshape(inf_bs, config.model.num_prims, -1)
if perchannel_norm:
recon_param = recon_param / config.model.latent_nf * latent_std + latent_mean
recon_srt_param = recon_param[:, :, 0:4]
recon_feat_param = recon_param[:, :, 4:] # [8, 2048, 64]
recon_feat_param_list = []
# one-by-one to avoid oom
for inf_bidx in range(inf_bs):
if not perchannel_norm:
decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]) / config.model.latent_nf)
else:
decoded = vae.decode(recon_feat_param[inf_bidx, ...].reshape(1*config.model.num_prims, *latent.shape[-4:]))
recon_feat_param_list.append(decoded.detach())
recon_feat_param = torch.concat(recon_feat_param_list, dim=0)
# invert normalization
if not perchannel_norm:
recon_srt_param[:, :, 0:1] = (recon_srt_param[:, :, 0:1] / 10) + 0.05
recon_feat_param[:, 0:1, ...] /= 5.
recon_feat_param[:, 1:, ...] = (recon_feat_param[:, 1:, ...] + 1) / 2.
recon_feat_param = recon_feat_param.reshape(inf_bs, config.model.num_prims, -1)
recon_param = torch.concat([recon_srt_param, recon_feat_param], dim=-1)
visualize_primvolume("{}/dstep{:04d}_recon.jpg".format(current_output_dir, sampled_count), batch, recon_param, rm, device)
visualize_video_primvolume(current_output_dir, batch, recon_param, 60, rm, device)
prim_params = {'srt_param': recon_srt_param[0].detach().cpu(), 'feat_param': recon_feat_param[0].detach().cpu()}
torch.save({'model_state_dict': prim_params}, "{}/denoised.pt".format(current_output_dir))
if config.inference.export_glb:
logger.info(f"Starting GLB Mesh Extraction...")
config.model.pop("vae")
config.model.pop("vae_checkpoint_path")
config.model.pop("conditioner")
config.model.pop("generator")
config.model.pop("latent_nf")
config.model.pop("latent_mean")
config.model.pop("latent_std")
model_primx = load_from_config(config.model)
for img_path in img_list:
img_name = img_path[:-4]
output_path = os.path.join(inference_dir, img_name)
denoise_param_path = os.path.join(inference_dir, img_name, 'denoised.pt')
ckpt_weight = torch.load(denoise_param_path, map_location='cpu')['model_state_dict']
model_primx.load_state_dict(ckpt_weight)
model_primx.to(device)
model_primx.eval()
with torch.no_grad():
model_primx.srt_param[:, 1:4] *= 0.85
extract_texmesh(config.inference, model_primx, output_path, device)
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
# manually enable tf32 to get speedup on A100 GPUs
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# set config
config = OmegaConf.load(str(sys.argv[1]))
config_cli = OmegaConf.from_cli(args_list=sys.argv[2:])
if config_cli:
logger.info("overriding with following values from args:")
logger.info(OmegaConf.to_yaml(config_cli))
config = OmegaConf.merge(config, config_cli)
main(config)