forked from sethjuarez/rocksie
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
48 lines (39 loc) · 1.83 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import math
import torch
from typing import Optional
import pytorch_lightning as pl
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, random_split
class RoshamboDataModule(pl.LightningDataModule):
def __init__(self, data_dir: str = "path/to/dir",
batch_size: int = 32,
train_split: float = .8):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.train_split = train_split
def setup(self, stage: Optional[str] = None):
self.transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
#torch.zeros(size, 3, dtype=torch.float).scatter_(1, y.view(-1, 1), 1)
self.target_transform = transforms.Compose([
transforms.Lambda(lambda y: torch.zeros(len(self.classes), dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
])
self.raw_data = datasets.ImageFolder(self.data_dir,
transform=self.transform,
target_transform=self.target_transform)
self.classes = self.raw_data.classes
sz = len(self.raw_data)
train_sz = math.floor(self.train_split * sz)
val_sz = sz - train_sz
self.train_dataset, self.val_dataset = random_split(self.raw_data,
[train_sz, val_sz])
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.batch_size)
def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size=self.batch_size)