-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathmain.py
143 lines (117 loc) · 5.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
"""
Created on Tue May 26 16:59:14 2020
@author: HQ Xie
"""
import os
import argparse
import time
import json
import torch
import random
import torch.nn as nn
import numpy as np
from utils import SNR_to_noise, initNetParams, train_step, val_step, train_mi
from dataset import EurDataset, collate_data
from models.transceiver import DeepSC
from models.mutual_info import Mine
from torch.utils.data import DataLoader
from tqdm import tqdm
parser = argparse.ArgumentParser()
#parser.add_argument('--data-dir', default='data/train_data.pkl', type=str)
parser.add_argument('--vocab-file', default='europarl/vocab.json', type=str)
parser.add_argument('--checkpoint-path', default='checkpoints/deepsc-Rayleigh', type=str)
parser.add_argument('--channel', default='Rayleigh', type=str, help = 'Please choose AWGN, Rayleigh, and Rician')
parser.add_argument('--MAX-LENGTH', default=30, type=int)
parser.add_argument('--MIN-LENGTH', default=4, type=int)
parser.add_argument('--d-model', default=128, type=int)
parser.add_argument('--dff', default=512, type=int)
parser.add_argument('--num-layers', default=4, type=int)
parser.add_argument('--num-heads', default=8, type=int)
parser.add_argument('--batch-size', default=128, type=int)
parser.add_argument('--epochs', default=80, type=int)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def validate(epoch, args, net):
test_eur = EurDataset('test')
test_iterator = DataLoader(test_eur, batch_size=args.batch_size, num_workers=0,
pin_memory=True, collate_fn=collate_data)
net.eval()
pbar = tqdm(test_iterator)
total = 0
with torch.no_grad():
for sents in pbar:
sents = sents.to(device)
loss = val_step(net, sents, sents, 0.1, pad_idx,
criterion, args.channel)
total += loss
pbar.set_description(
'Epoch: {}; Type: VAL; Loss: {:.5f}'.format(
epoch + 1, loss
)
)
return total/len(test_iterator)
def train(epoch, args, net, mi_net=None):
train_eur= EurDataset('train')
train_iterator = DataLoader(train_eur, batch_size=args.batch_size, num_workers=0,
pin_memory=True, collate_fn=collate_data)
pbar = tqdm(train_iterator)
noise_std = np.random.uniform(SNR_to_noise(5), SNR_to_noise(10), size=(1))
for sents in pbar:
sents = sents.to(device)
if mi_net is not None:
mi = train_mi(net, mi_net, sents, 0.1, pad_idx, mi_opt, args.channel)
loss = train_step(net, sents, sents, 0.1, pad_idx,
optimizer, criterion, args.channel, mi_net)
pbar.set_description(
'Epoch: {}; Type: Train; Loss: {:.5f}; MI {:.5f}'.format(
epoch + 1, loss, mi
)
)
else:
loss = train_step(net, sents, sents, noise_std[0], pad_idx,
optimizer, criterion, args.channel)
pbar.set_description(
'Epoch: {}; Type: Train; Loss: {:.5f}'.format(
epoch + 1, loss
)
)
if __name__ == '__main__':
# setup_seed(10)
args = parser.parse_args()
args.vocab_file = '/import/antennas/Datasets/hx301/' + args.vocab_file
""" preparing the dataset """
vocab = json.load(open(args.vocab_file, 'rb'))
token_to_idx = vocab['token_to_idx']
num_vocab = len(token_to_idx)
pad_idx = token_to_idx["<PAD>"]
start_idx = token_to_idx["<START>"]
end_idx = token_to_idx["<END>"]
""" define optimizer and loss function """
deepsc = DeepSC(args.num_layers, num_vocab, num_vocab,
num_vocab, num_vocab, args.d_model, args.num_heads,
args.dff, 0.1).to(device)
mi_net = Mine().to(device)
criterion = nn.CrossEntropyLoss(reduction = 'none')
optimizer = torch.optim.Adam(deepsc.parameters(),
lr=1e-4, betas=(0.9, 0.98), eps=1e-8, weight_decay = 5e-4)
mi_opt = torch.optim.Adam(mi_net.parameters(), lr=1e-3)
#opt = NoamOpt(args.d_model, 1, 4000, optimizer)
initNetParams(deepsc)
for epoch in range(args.epochs):
start = time.time()
record_acc = 10
train(epoch, args, deepsc)
avg_acc = validate(epoch, args, deepsc)
if avg_acc < record_acc:
if not os.path.exists(args.checkpoint_path):
os.makedirs(args.checkpoint_path)
with open(args.checkpoint_path + '/checkpoint_{}.pth'.format(str(epoch + 1).zfill(2)), 'wb') as f:
torch.save(deepsc.state_dict(), f)
record_acc = avg_acc
record_loss = []