forked from brinkar/real-world-machine-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf.py3
139 lines (108 loc) · 4.12 KB
/
tf.py3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
# _d = train_images.shape
# print(train_labels)
# plt.figure()
# plt.imshow(train_images[0])
# plt.colorbar()
# plt.grid(False)
# plt.show()
train_images = train_images / 255.0
test_images = test_images / 255.0
# plt.figure(figsize=(10,10))
# for i in range(25):
# plt.subplot(5,5,i+1)
# plt.xticks([])
# plt.yticks([])
# plt.grid(False)
# plt.imshow(train_images[i], cmap=plt.cm.binary)
# plt.xlabel(class_names[train_labels[i]])
# plt.show()
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.compat.v1.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=5)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Точность после проверки:', test_acc)
predictions = model.predict(test_images)
# print(predictions[0])
# print(np.argmax(predictions[0]))
# print(test_labels[0])
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array[i], true_label[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
# i = 0
# plt.figure(figsize=(6,3))
# plt.subplot(1,2,1)
# plot_image(i, predictions, test_labels, test_images)
# plt.subplot(1,2,2)
# plot_value_array(i, predictions, test_labels)
# # plt.show()
#
# i = 12
# plt.figure(figsize=(6,3))
# plt.subplot(1,2,1)
# plot_image(i, predictions, test_labels, test_images)
# plt.subplot(1,2,2)
# plot_value_array(i, predictions, test_labels)
# # plt.show()
#
# # Отображаем первые X тестовых изображений, их предсказанную и настоящую метки
# # Корректные предсказания окрашиваем в синий цвет, ошибочные в красный
# num_rows = 5
# num_cols = 3
# num_images = num_rows*num_cols
# plt.figure(figsize=(2*2*num_cols, 2*num_rows))
# for i in range(num_images):
# plt.subplot(num_rows, 2*num_cols, 2*i+1)
# plot_image(i, predictions, test_labels, test_images)
# plt.subplot(num_rows, 2*num_cols, 2*i+2)
# plot_value_array(i, predictions, test_labels)
# # plt.show()
# Берем одну картинку из проверочного сета
img = test_images[0]
print(img.shape)
# Добавляем изображение в наш пакет данных, состоящий только из одного нашего изображения
img = (np.expand_dims(img,0))
print(img.shape)
predictions_single = model.predict(img)
print(predictions_single)
plot_value_array(0, predictions_single, test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
# plt.show()
print(np.argmax(predictions_single[0]))