forked from opencv/opencv_zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
129 lines (106 loc) · 5.32 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
import numpy as np
import cv2 as cv
from lpd_yunet import LPD_YuNet
# Check OpenCV version
assert cv.__version__ >= "4.9.0", \
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(description='LPD-YuNet for License Plate Detection')
parser.add_argument('--input', '-i', type=str,
help='Usage: Set path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='license_plate_detection_lpd_yunet_2023mar.onnx',
help='Usage: Set model path, defaults to license_plate_detection_lpd_yunet_2023mar.onnx.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--conf_threshold', type=float, default=0.9,
help='Usage: Set the minimum needed confidence for the model to identify a license plate, defaults to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.')
parser.add_argument('--nms_threshold', type=float, default=0.3,
help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3. Suppress bounding boxes of iou >= nms_threshold.')
parser.add_argument('--top_k', type=int, default=5000,
help='Usage: Keep top_k bounding boxes before NMS.')
parser.add_argument('--keep_top_k', type=int, default=750,
help='Usage: Keep keep_top_k bounding boxes after NMS.')
parser.add_argument('--save', '-s', action='store_true',
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()
def visualize(image, dets, line_color=(0, 255, 0), text_color=(0, 0, 255), fps=None):
output = image.copy()
if fps is not None:
cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color)
for det in dets:
bbox = det[:-1].astype(np.int32)
x1, y1, x2, y2, x3, y3, x4, y4 = bbox
# Draw the border of license plate
cv.line(output, (x1, y1), (x2, y2), line_color, 2)
cv.line(output, (x2, y2), (x3, y3), line_color, 2)
cv.line(output, (x3, y3), (x4, y4), line_color, 2)
cv.line(output, (x4, y4), (x1, y1), line_color, 2)
return output
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# Instantiate LPD-YuNet
model = LPD_YuNet(modelPath=args.model,
confThreshold=args.conf_threshold,
nmsThreshold=args.nms_threshold,
topK=args.top_k,
keepTopK=args.keep_top_k,
backendId=backend_id,
targetId=target_id)
# If input is an image
if args.input is not None:
image = cv.imread(args.input)
h, w, _ = image.shape
# Inference
model.setInputSize([w, h])
results = model.infer(image)
# Print results
print('{} license plates detected.'.format(results.shape[0]))
# Draw results on the input image
image = visualize(image, results)
# Save results if save is true
if args.save:
print('Resutls saved to result.jpg')
cv.imwrite('result.jpg', image)
# Visualize results in a new window
if args.vis:
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
cv.imshow(args.input, image)
cv.waitKey(0)
else: # Omit input to call default camera
deviceId = 0
cap = cv.VideoCapture(deviceId)
w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
model.setInputSize([w, h])
tm = cv.TickMeter()
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
print('No frames grabbed!')
break
# Inference
tm.start()
results = model.infer(frame) # results is a tuple
tm.stop()
# Draw results on the input image
frame = visualize(frame, results, fps=tm.getFPS())
# Visualize results in a new Window
cv.imshow('LPD-YuNet Demo', frame)
tm.reset()