-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
182 lines (160 loc) · 7.29 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import math
import sys
import os
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets
from couplings import get_coupling
class Sampler:
def __init__(self, datasets, roots, channels, size, X1_eps_std, coupling, coupling_bs, bs, device='cuda:0'):
if coupling=='pix2pix' or 'inverse' in coupling:
if len(datasets) != 1:
print('\n{} coupling only accepts a single dataset! Aborting...\n')
sys.exit()
datasets.append('gaussian') # A dummy dataset which will not be used for sampling
self.coupling_bs = coupling_bs
self.channels = channels
self.size = size
self.bs = bs
self.X0_loader = get_img_loader(datasets[0], roots[0], coupling_bs, channels, size)
self.X1_loader = get_img_loader(datasets[1], roots[1], coupling_bs, channels, size)
self.coupling = get_coupling(coupling, bs, image_size=size)
self.X1_eps_std = X1_eps_std
self.device = device
def __sample_X0__(self):
return next(iter(self.X0_loader))
def __sample_X1__(self):
return next(iter(self.X1_loader))
def sample_joint(self):
X0, X1 = self.__sample_X0__(), self.__sample_X1__()
X0, X1 = self.coupling(X0,X1)
X1 = X1 + self.X1_eps_std * torch.randn_like(X1)
return X0, X1
def sample_X0(self):
return self.sample_joint()[0]
def sample_X1(self):
return self.sample_joint()[1]
class TensorDataset(Dataset):
def __init__(self, data, transform=None):
self.data = data
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x = self.data[index]
if self.transform:
x = self.transform(x)
return x
class ImageDataset(datasets.VisionDataset):
def __init__(self, root, transform=None, **kwargs):
super().__init__(root, transform=transform)
if not isinstance(root, Path):
root = Path(root)
self.fpaths = sorted(root.glob('*.png')) + sorted(root.glob('*.jpg'))
assert len(self.fpaths) > 0, 'No images found in {}'.format(root)
def __len__(self):
return len(self.fpaths)
def __getitem__(self, index):
fpath = self.fpaths[index]
img = Image.open(fpath).convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img
def get_img_loader(dataset, root, bs, channels, size):
img_tfs = transforms.Compose([transforms.ToTensor(),
transforms.Resize(size, antialias=True),
transforms.Normalize(mean=[0.5]*channels, std=[0.5]*channels)])
NOISE_DATA = ['gaussian', 'sphere']
batch_size = 1 if dataset in NOISE_DATA else bs
if dataset == 'gaussian':
tfs = lambda x : torch.randn(size=[bs,channels,size,size])
train_data = TensorDataset(torch.zeros(size=[1]), transform=tfs)
n_samples = 0
elif dataset == 'sphere':
tfs = lambda x : F.normalize(torch.randn(size=[bs,channels,size,size]), dim=[1,2,3])
train_data = TensorDataset(torch.zeros(size=[1]), transform=tfs)
n_samples = 0
elif dataset == 'mnist':
train_data = datasets.MNIST(root=root, train=True, download=False, transform=img_tfs)
n_samples = 60000
elif dataset == 'fmnist':
train_data = datasets.FashionMNIST(root=root, train=True, download=False, transform=img_tfs)
n_samples = 60000
elif dataset == 'kmnist':
train_data = datasets.KMNIST(root=root, train=True, download=True, transform=img_tfs)
n_samples = 60000
elif dataset == 'cifar10':
train_data = datasets.CIFAR10(root=root, train=True, download=False, transform=img_tfs)
n_samples = 50000
elif dataset == 'imagenet':
tfs = transforms.Compose([transforms.ToTensor(),
transforms.Resize(size, antialias=True),
transforms.CenterCrop(size),
transforms.Normalize(mean=[0.5]*channels, std=[0.5]*channels)])
train_data = datasets.ImageFolder(root=root, transform=tfs)
n_samples = len(train_data)
elif dataset == 'ffhq':
train_data = datasets.ImageFolder(root=os.path.join(root,'FFHQ64','train'), transform=img_tfs)
n_samples = 69000
elif dataset == 'ffhq_val':
train_data = datasets.ImageFolder(root=os.path.join(root,'FFHQ64','val'), transform=img_tfs)
n_samples = 1000
elif dataset == 'ffhq_orig_train':
train_data = datasets.ImageFolder(root=os.path.join(root,'FFHQ','train'), transform=img_tfs)
n_samples = 69000
return DataLoader(train_data, batch_size=batch_size)
elif dataset == 'ffhq_orig_val':
train_data = datasets.ImageFolder(root=os.path.join(root,'FFHQ','val'), transform=img_tfs)
n_samples = 69000
return DataLoader(train_data, batch_size=batch_size)
elif dataset == 'edges2shoes':
train_data = datasets.ImageFolder(root=os.path.join(root,'edges2shoes', 'train'), transform=img_tfs)
n_samples = 69000
return DataLoader(train_data, batch_size=batch_size, shuffle=True)
def toy_generator(dataset, N):
if dataset == 'gaussian':
X = torch.randn(size=[N,2]).float()
elif dataset == 'mog':
angles = np.linspace(0, 14 * np.pi / 8, 8)
X1 = 0.8 * np.cos(angles).reshape(-1,1)
X2 = 0.8 * np.sin(angles).reshape(-1,1)
X = np.concatenate([X1,X2], axis=1)
X = X[:,None] + 0.08 * np.random.normal(size=[X.shape[0],N,X.shape[1]])
X = X.reshape(8*N,2)
X = X[np.random.permutation(X.shape[0])[:N]]
X = 1.5*torch.tensor(X).float()
elif dataset == 'circles':
X1 = 0.9 * F.normalize(torch.randn(size=[N,2]))
X2 = 0.6 * F.normalize(torch.randn(size=[N,2]))
X3 = 0.3 * F.normalize(torch.randn(size=[N,2]))
X = torch.cat([X1,X2,X3], dim=0)
X = X + 0.01 * torch.randn_like(X)
X = X[torch.randperm(X.shape[0])][:N]
X = 1.5 * X.float()
elif dataset == 'circle':
X = 0.9 * F.normalize(torch.randn(size=[N,2]))
X = X.float()
elif dataset == 'checker':
corners = torch.tensor([[-1,0.5], [0,0.5], [-0.5, 0], [0.5, 0.0], [-1, -0.5], [0, -0.5], [-0.5, -1], [0.5, -1]])
X = 0.9*torch.cat([corner.reshape(1,2) + 0.5*torch.rand(size=[N,2]) for corner in corners], dim=0).float()
X = X[torch.randperm(X.shape[0])][:N]
X = 3.0 * X.float()
elif dataset == 'grid':
x = np.linspace(-1, 1, 4)
y = np.linspace(-1, 1, 4)
X, Y = np.meshgrid(x, y)
M = np.concatenate([X.reshape(-1,1),Y.reshape(-1,1)], axis=1) * 0.8
n = math.ceil(N/M.shape[0])
S = M[:,None] + 0.05*np.random.normal(size=[M.shape[0],n,2])
S = S.reshape(-1,2)
S = S[np.random.permutation(S.shape[0])][:N]
X = 1.5*torch.tensor(S).float()
return X
def get_2d_loader(dataset, bs):
tfs = lambda x : toy_generator(dataset, bs)
return DataLoader(TensorDataset(torch.zeros(size=[1]), transform=tfs), batch_size=1, shuffle=True)